Demethylation drug 5-Aza-2'-deoxycytidine-induced upregulation of miR-200c inhibits the migration, invasion and epithelial-mesenchymal transition of clear cell renal cell carcinoma in vitro

去甲基化药物5-氮杂-2'-脱氧胞苷诱导miR-200c上调抑制透明细胞肾细胞癌体外迁移、侵袭及上皮-间质转化

阅读:8
作者:Juan Jiang, B O Yi, Siqing Ding, Jian Sun, Wei Cao, Mengzi Liu

Abstract

The microRNA (miR)-200 family has been found to be involved in the process of mesenchymal-epithelial transition during renal development. Deregulation of miR-200c has been suggested to be involved in clear cell renal cell carcinoma (ccRCC). However, the precise role of miR-200c in the regulation of ccRCC metastasis has not been previously reported. In the present study, it was observed that miR-200c was frequently downregulated in ccRCC tissue compared with matched adjacent normal tissue. The expression of miR-200c was additionally reduced in ccRCC cell lines when compared with levels in normal renal cells. The DNA demethylation drug 5-Aza-2'-deoxycytidine (Aza) was used to treat several ccRCC cell lines, and it was observed that the expression of miR-200c was significantly increased following Aza treatment. Furthermore, treatment with Aza markedly inhibited ccRCC cell invasion and migration, while treatment with miR-200c inhibitor significantly enhanced invasion and migration of ccRCC cells. In addition, Aza treatment significantly promoted expression of E-cadherin and inhibited the expression of N-cadherin, while the inhibition of miR-200c downregulated E-cadherin and upregulated the expression of N-cadherin, suggesting that miR-200c has a suppressive role in epithelial-mesenchymal transition (EMT) of ccRCC cells. In conclusion, it was suggested that demethylation drug Aza-induced upregulation of miR-200c may inhibit migration, invasion and EMT in ccRCC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。