Quantification of Carbon Nanotube Liquid Crystal Morphology via Neutron Scattering

通过中子散射量化碳纳米管液晶形态

阅读:7
作者:Francesca Mirri, Rana Ashkar, Vida Jamali, Lucy Liberman, Robert A Pinnick, Paul van der Schoot, Yeshayahu Talmon, Paul D Butler, Matteo Pasquali

Abstract

Liquid phase assembly is among the most industrially attractive routes for scalable carbon nanotube (CNT) processing. Chlorosulfonic acid (CSA) is known to be an ideal solvent for CNTs, spontaneously dissolving them without compromising their properties. At typical processing concentrations, CNTs form liquid crystals in CSA; however, the morphology of these phases and their concentration dependence are only qualitatively understood. Here, we use small-angle neutron scattering (SANS), combined with polarized light microscopy and cryogenic transmission electron microscopy to study solution morphology over a range of concentrations and two different CNT lengths. Our results show that at the highest concentration studied the long CNTs form a highly ordered fully nematic phase, while short CNTs remain in a biphasic regime. Upon dilution, long CNTs undergo a 2D lattice expansion, whereas short CNTs seem to have an intermediate expansion between 2D and 3D probably due to the biphasic nature of the system. The average spacing between the CNTs scaled by the CNT diameter is the same in both systems, as expected for infinitely long aligned rods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。