Lysophosphatidylcholine acyltransferase 3 deficiency impairs 3T3L1 cell adipogenesis through activating Wnt/β-catenin pathway

溶血磷脂酰胆碱酰基转移酶 3 缺乏通过激活 Wnt/β-catenin 通路损害 3T3L1 细胞脂肪生成

阅读:4
作者:Chunyan Feng, Bin Lou, Jibin Dong, Zhiqiang Li, Yunqin Chen, Yue Li, Xuemei Zhang, Xian-Cheng Jiang, Tingbo Ding

Abstract

Levels of polyunsaturated phosphatidylcholine (PC) influence plasma membrane structure and function. Phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation/reacylation remodeling via Lands' cycle (non-Kennedy pathway). The reacylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), which adds a polyunsaturated fatty acid at the sn-2 position. Four LPCAT isoforms have been described to date, among which we found LPCAT3 to be the major isoform in adipose tissue, but its exact role in adipogenesis is unclear. In this study, we aimed to investigate whether LPCAT3 activity affects 3T3L1 cell adipogenic differentiation potential and its underline mechanism. Lentivirus-mediated LPCAT3 shRNA expression stably knocked down LPCAT3 in 3T3L1 preadipocytes and LPCAT3 deficiency dramatically reduced the levels of cellular polyunsaturated PCs. Importantly, we found that this deficiency activated the β-catenin dependent Wnt signaling pathway, which suppressed the expression of adipogenesis-related genes, thereby inhibiting 3T3L1 preadipocyte differentiation and lipid accumulation. Moreover, three different Wnt/β-catenin pathway inhibitors reversed the effect of LPCAP3 deficiency, suggesting that Wnt/β-catenin pathway activation is one of the causes for the observed phenotypes. To the best of our knowledge, we show here for the first time that PC remodeling is an important regulator of adipocyte differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。