CXCL12 promotes the stabilization of atherosclerotic lesions mediated by smooth muscle progenitor cells in Apoe-deficient mice

CXCL12 促进 Apoe 缺陷小鼠中平滑肌祖细胞介导的动脉粥样硬化病变的稳定

阅读:5
作者:Shamima Akhtar, Felix Gremse, Fabian Kiessling, Christian Weber, Andreas Schober

Approach and results

Intravenous injection of CXCL12 selectively increased the level of Sca1(+)Lin platelet derived growth factor receptor-β(+) SPCs in the circulation as determined by flow cytometry. Macrophage-rich lesions were induced by partial ligation of the carotid artery in Apoe(-/-) mice. Repeated injection of CXCL12 reduced the macrophage content, increased the number of smooth muscle cells, increased the fibrous cap thickness, and increased the collagen content in these lesions. However, CXCL12 did not alter the lesion size or the luminal diameter of the carotid artery as determined by planimetry and micro-computed tomography, respectively. Recruitment of bone marrow-derived SPCs to the lesions was increased after treatment with CXCL12 in chimeric mice that expressed SM22-LacZ in bone marrow cells as determined by quantification of the number of lesional β-galactosidase-expressing cells. CXCL12 expression was upregulated in atherosclerotic arteries after CXCL12 treatment. Silencing of arterial CXCL12 expression during atherosclerosis promoted lesion formation and reduced the lesional smooth muscle cell content in CXCL12-treated mice. Conclusions: Systemic treatment with CXCL12 promotes a more stable atherosclerotic lesion phenotype and enhances the accumulation of SPCs in these lesions without promoting atherosclerosis. Thus, CXCL12-induced SPC mobilization appears a promising approach to treat unstable atherosclerosis.

Conclusions

Systemic treatment with CXCL12 promotes a more stable atherosclerotic lesion phenotype and enhances the accumulation of SPCs in these lesions without promoting atherosclerosis. Thus, CXCL12-induced SPC mobilization appears a promising approach to treat unstable atherosclerosis.

Objective

Unstable atherosclerotic lesions are prone to rupture, which leads to atherothrombosis. Chemokine (C-X-C motif) ligand 12 (CXCL12) promotes the mobilization and neointimal recruitment of smooth muscle progenitor cells (SPCs), and thereby mediates vascular repair. Moreover, treatment with SPCs stabilizes atherosclerotic lesions in mice. We investigated the role of CXCL12 in the treatment of unstable atherosclerotic lesions. Approach and

Results

Intravenous injection of CXCL12 selectively increased the level of Sca1(+)Lin platelet derived growth factor receptor-β(+) SPCs in the circulation as determined by flow cytometry. Macrophage-rich lesions were induced by partial ligation of the carotid artery in Apoe(-/-) mice. Repeated injection of CXCL12 reduced the macrophage content, increased the number of smooth muscle cells, increased the fibrous cap thickness, and increased the collagen content in these lesions. However, CXCL12 did not alter the lesion size or the luminal diameter of the carotid artery as determined by planimetry and micro-computed tomography, respectively. Recruitment of bone marrow-derived SPCs to the lesions was increased after treatment with CXCL12 in chimeric mice that expressed SM22-LacZ in bone marrow cells as determined by quantification of the number of lesional β-galactosidase-expressing cells. CXCL12 expression was upregulated in atherosclerotic arteries after CXCL12 treatment. Silencing of arterial CXCL12 expression during atherosclerosis promoted lesion formation and reduced the lesional smooth muscle cell content in CXCL12-treated mice. Conclusions: Systemic treatment with CXCL12 promotes a more stable atherosclerotic lesion phenotype and enhances the accumulation of SPCs in these lesions without promoting atherosclerosis. Thus, CXCL12-induced SPC mobilization appears a promising approach to treat unstable atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。