Inhibiting miR‑1 attenuates pulmonary arterial hypertension in rats

抑制 miR-1 可减轻大鼠肺动脉高压

阅读:6
作者:Yun Liu #, Yong Li #, Jinhai Li, Xiangrong Zuo, Quan Cao, Weiping Xie, Hong Wang

Abstract

MicroRNAs (miRs) are reported to serve key roles in pulmonary arterial hypertension (PAH). miR‑1 has been found in cardiovascular diseases. The present study aimed to determine whether the knockdown of miR‑1 could inhibit right ventricle (RV) remodeling and thereby control PAH in model rats. PAH model rats were established by exposing rats to hypoxia, while cardiac fibroblasts (CFs) obtained from PAH model rats were treated with hypoxia to establish an in vitro model, and RV remodeling was evaluated by Masson staining and the levels of collagen I, collagen III, α‑smooth muscle actin (α‑SMA) and connective tissue growth factor (CTGF) evaluated by western blotting or reverse transcription‑quantitative PCR. The results revealed that the expression levels of miR‑1 were upregulated in the RV of PAH model rats induced with hypoxia and in the CFs treated with hypoxia. The mean pulmonary arterial pressure, RV systolic pressure, RV/(left ventricle + interventricular septum) and RV/tibia length were increased in PAH rats; however, the increases in all parameters were subsequently reversed by transfection with a miR‑1 antagomiR in PAH model rats. The transfection with the miR‑1 antagomiR inhibited the development of RV fibrosis and downregulated the mRNA expression levels of collagen I, collagen III, α‑SMA and CTGF in the RV tissue of PAH model rats. The upregulation of collagen I, collagen III, α‑SMA and CTGF expression levels in hypoxia‑treated CFs was also subsequently reversed by miR‑1 antagomiR transfection. The expression levels of collagen I, collagen III, α‑SMA and CTGF were also upregulated in the CFs obtained from PAH model rats, and these increases were attenuated by miR‑1 antagomiR transfection. The expression levels of phosphorylated (p)‑PI3K and p‑AKT were also upregulated in hypoxia‑treated CFs, and these increases were also inhibited by transfection with miR‑1 antagomiR. In conclusion, these results indicated that inhibiting miR‑1 may attenuate RV hypertrophy and fibrosis in PAH model rats, a mechanism that may involve the PI3K/AKT signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。