Glioma progression is mediated by an addiction to aberrant IGFBP2 expression and can be blocked using anti-IGFBP2 strategies

胶质瘤进展是由对异常 IGFBP2 表达的依赖所介导的,可以使用抗 IGFBP2 策略来阻止

阅读:6
作者:Lynette M Phillips, Xinhui Zhou, David E Cogdell, Corrine Yingxuan Chua, Anouk Huisinga, Kenneth R Hess, Gregory N Fuller, Wei Zhang

Abstract

Insulin-like growth factor binding protein 2 (IGFBP2) overexpression is common in high-grade glioma and is both a strong biomarker of aggressive behaviour and a well-documented prognostic factor. IGFBP2 is a member of the secreted IGFBP family that functions by interacting with circulating IGFs to modulate IGF-mediated signalling. This traditional view of IGFBP2 activities has been challenged by the recognition of the diverse functions and cellular locations of members of the IGFBP family. IGFBP2 has been previously established as a driver of glioma progression to a higher grade. In this study, we sought to determine whether IGFBP2-overexpressing tumours are dependent on continued oncogene expression and whether IGFBP2 is a viable therapeutic target in glioma. We took advantage of the well-characterized RCAS/Ntv-a mouse model to create a doxycycline-inducible IGFBP2 model of glioma and demonstrated that the temporal expression of IGFBP2 has dramatic impacts on tumour progression and survival. Further, we demonstrated that IGFBP2-driven tumours are dependent on the continued expression of IGFBP2, as withdrawal of this oncogenic signal led to a significant decrease in tumour progression and prolonged survival. Inhibition of IGFBP2 also impaired tumour cell spread. To assess a therapeutically relevant inhibition strategy, we evaluated a neutralizing antibody against IGFBP2 and demonstrated that it impaired downstream IGFBP2-mediated oncogenic signalling pathways. The studies presented here indicate that IGFBP2 not only is a driver of glioma progression and a prognostic factor but is also required for tumour maintenance and thus represents a viable therapeutic target in the treatment of glioma. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。