Scanning laser-induced endothelial injury: a standardized and reproducible thrombosis model for intravital microscopy

扫描激光诱导的内皮损伤:用于活体显微镜的标准化和可重复的血栓形成模型

阅读:7
作者:P Larsson, V Tarlac, T-Y Wang, T Bonnard, C E Hagemeyer, J R Hamilton, R L Medcalf, S H Cody, N Boknäs

Abstract

Vascular injury models are indispensable for studying thrombotic processes in vivo. Amongst the available methods for inducing thrombosis, laser-induced endothelial injury (LIEI) has several unique advantages. However, a lack of methodological standardization and expensive instrumentation remain significant problems decreasing reproducibility and impeding the adoption of LIEI in the wider scientific community. In this, study, we developed a standardized protocol for scanning laser-induced endothelial injury (scanning-LIEI) of murine mesenteric veins using the intrinsic 405 nm laser of a conventional laser scanning confocal microscope. We show that our model produces thrombi with prominent core-shell architectures and minimal radiation-related fluorescence artefacts. In comparison with previous methods, the scanning-LIEI model exhibits reduced experimental variability, enabling the demonstration of dose-response effects for anti-thrombotic drugs using small animal cohorts. Scanning-LIEI using the intrinsic 405 nm laser of a confocal laser scanning microscope represents a new method to induce standardized vascular injury with improved reproducibility of thrombus formation. The reduced need for instrument customisation and user experience means that this model could be more readily adopted in the research community.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。