Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes

核因子 κB 和哺乳动物雷帕霉素靶信号的双向调节在功能上将 Bnip3 基因抑制与心室肌细胞的细胞存活联系起来

阅读:9
作者:Rimpy Dhingra, Hongying Gang, Yan Wang, Agnieszka K Biala, Yaron Aviv, Victoria Margulets, Andrew Tee, Lorrie A Kirshenbaum

Background

Tumor necrosis factor-α and other proinflammatory cytokines activate the canonical nuclear factor (NF)-κB pathway through the kinase IKKβ. Previously, we established that IKKβ is also critical for Akt-mediated NF-κB activation in ventricular myocytes. Akt activates the kinase mammalian target of rapamycin (mTOR), which mediates important processes such as cardiac hypertrophy. However, whether mTOR regulates cardiac myocyte cell survival is unknown.

Conclusions

To our knowledge, these data provide the first evidence for a bidirectional link between NF-κB signaling and mTOR that is critical in the regulation of Bnip3 expression and cardiac myocyte death. Hence, modulation of this axis may be cardioprotective during ischemia.

Results

Herein, we demonstrate bidirectional regulation between NF-κB signaling and mTOR, the balance which determines ventricular myocyte survival. Overexpression of IKKβ resulted in mTOR activation and conversely overexpression of mTOR lead to NF-κB activation. Loss of function approaches demonstrated that endogenous levels of IKKβ and mTOR also signal through this pathway. NF-κB activation by mTOR was mediated by phosphorylation of the NF-κB p65 subunit increasing p65 nuclear translocation and activation of gene transcription. This circuit was also important for NF-κB activation by the canonical tumor necrosis factor-α pathway. Our previous work has shown that NF-κB signaling suppresses transcription of the death gene Bnip3 resulting in ventricular myocyte survival. Inhibition of mTOR with rapamycin decreased NF-κB activation resulting in increased Bnip3 expression and cell death. Conversely, mTOR overexpression suppressed Bnip3 levels and cell death of ventricular myocytes in response to hypoxia. Conclusions: To our knowledge, these data provide the first evidence for a bidirectional link between NF-κB signaling and mTOR that is critical in the regulation of Bnip3 expression and cardiac myocyte death. Hence, modulation of this axis may be cardioprotective during ischemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。