Autophagy activation and the mechanism of retinal microvascular endothelial cells in hypoxia

缺氧条件下视网膜微血管内皮细胞自噬激活及机制

阅读:4
作者:Rong Li, Li-Zhao Wang, Jun-Hui Du, Lei Zhao, Yang Yao

Aim

To explore the state of autophagy and related mechanisms in the murine retinal microvascular endothelial cells (RMECs) under hypoxia stimulation.

Conclusion

In murine RMECs autophagy is activated under hypoxia possibly through activation of the AMPK/mTOR signaling pathway.

Methods

The murine RMECs were primarily cultured and randomly divided into three groups: hypoxia group (cultured in 1% O2 environment), hypoxia+autophagy inhibition group [pretreated with 5 mmol/L 3-methyladenine (3-MA) for 4h followed by incubation in 1% O2] and control group (cultured under normoxic condition). The state of autophagy in RMECs was examined by assaying the turnover of light chain 3B (LC3BB) and expression of Beclin-1, Atg3 and Atg5 proteins with Western blotting, by detecting formation of autophagosomes with transmission electron microscopy (TEM) and by counting the number of GFP+ puncta in RMECs. The protein levels of AMPK, P-AMPK, Akt, P-Akt, m-TOR and P-mTOR were also assayed by Western blotting.

Results

Primary murine RMECs were successfully cultured. Under hypoxic conditions, the ratio of LC3BB-II/I and the expression of Beclin-1, Atg3 and Atg5 proteins were increased when compared with the control group. In addition, the numbers of autophagosome and the GFP+ puncta were also increased under hypoxia. However, pre-treatment with 3-MA obviously attenuated these changes in autophagy in RMECs under hypoxia. Protein expression of P-Akt and P-AMPK was increased but P-mTOR level was decreased in cells exposed to hypoxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。