Long-Term Evaluation of Retinal Morphology and Function in Rosa26-Cas9 Knock-In Mice

Rosa26-Cas9 基因敲入小鼠的视网膜形态和功能的长期评估

阅读:4
作者:Kabhilan Mohan, Sushil Kumar Dubey, Kyungsik Jung, Rashmi Dubey, Qing Jun Wang, Subhash Prajapati, Jacob Roney, Jennifer Abney, Mark Ellsworth Kleinman

Abstract

The CRISPR/Cas9 system is a robust, efficient, and cost-effective gene editing tool widely adopted in translational studies of ocular diseases. However, in vivo CRISPR-based editing in animal models poses challenges such as the efficient delivery of the CRISPR components in viral vectors with limited packaging capacity and a Cas9-associated immune response. Using a germline Cas9-expressing mouse model would help to overcome these limitations. Here, we evaluated the long-term effects of SpCas9 expression on retinal morphology and function using Rosa26-Cas9 knock-in mice. We observed abundant SpCas9 expression in the RPE and retina of Rosa26-Cas9 mice using the real-time polymerase chain reaction (RT-PCR), Western blotting, and immunostaining. SD-OCT imaging and histological analysis of the RPE, retinal layers, and vasculature showed no apparent structural abnormalities in adult and aged Cas9 mice. Full-field electroretinogram of adult and aged Cas9 mice showed no long-term functional changes in the retinal tissues because of constitutive Cas9 expression. The current study showed that both the retina and RPE maintain their phenotypic and functional features in Cas9 knock-in mice, establishing this as an ideal animal model for developing therapeutics for retinal diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。