Nrf2 and Keap1 abnormalities in esophageal squamous cell carcinoma and association with the effect of chemoradiotherapy

食管鳞状细胞癌中Nrf2和Keap1异常与放化疗疗效的关系

阅读:4
作者:Jingze Zhang, Qinghua Jiao, Li Kong, Jing Yu, Aiju Fang, Minghuan Li, Jinming Yu

Background

The Keap1-Nrf2 pathway is a key antioxidant and redox signaling cascade. Pathway abnormalities enhance the reactive oxygen species scavenging ability of cancer cells; thus the pathway is involved in carcinogenesis and resistance to chemoradiotherapy (CRT). This retrospective study was conducted to examine the status of the Keap1-Nrf2 pathway in locally advanced esophageal squamous cell carcinoma (ESCC) and to analyze its prognostic value in patients receiving CRT.

Conclusion

Aberrant signaling via the Keap1-Nrf2 pathway was common in ESCC and was associated with response and survival after CRT.

Methods

Nrf2 and Keap1 expression were immunohistochemically examined in 152 ESCC and 31 normal esophageal mucosae. All ESCC specimens were obtained from patients with locally advanced ESCC who underwent CRT.

Results

Strong staining of nuclear and cytoplasmic Nrf2 and limited or absent Keap1 expression was uncommon in normal tissues, but frequently observed in ESCC. Interaction between Nrf2 and Keap1 in normal mucosae is negatively correlated, while in tumors there is no negative correlation, indicating that there is little to no interaction between Nrf2 and Keap1 in ESCC. Positive Nrf2 expression in the nucleus was of diagnostic value for predicting ESCC from normal esophageal mucosae, and was significantly associated with poorer clinical response and poor progression-free survival after CRT. The value of Keap1 expression for diagnosis and predicting CRT outcomes was marginal. These different influences of Keap1 and Nrf2 on ESCC indicated that the signaling of this pathway was disturbed and displayed a Keap1-independent pattern.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。