The let-7 family of microRNAs suppresses immune evasion in head and neck squamous cell carcinoma by promoting PD-L1 degradation

let-7 家族 microRNA 通过促进 PD-L1 降解抑制头颈部鳞状细胞癌的免疫逃逸

阅读:5
作者:Dan Yu, Xueshibojie Liu, Guanghong Han, Yan Liu, Xue Zhao, Di Wang, Xiaomin Bian, Tingting Gu, Lianji Wen

Background

Accumulation of immunosuppressive protein programmed death-ligand 1 (PD-L1) has been documented in several cancers and contributes to the evasion of the host immune system. However, cancer cell-intrinsic signaling-dependent control of PD-L1 expression remains to be elucidated. Herein, we aimed to identify the let-7 family of microRNAs as candidates that up-regulate tumor cell PD-L1 expression and mediates immune evasion of head and neck squamous cell carcinoma (HNSCC).

Conclusions

Taken together, our findings highlight targeting let-7 family as a potential strategy to enhance immune checkpoint therapy for HNSCC.

Methods

The expression of let-7 family and PD-L1 was quantified in HNSCC tissues and adjacent normal tissues. PD-L1 degradation was evaluated in HNSCC cells in response to elevated expressions of let-7a or let-7b. The regulation of let-7 family on PD-L1 degradation through a mechanism involving T-cell factor-4 (TCF-4) control of β-catenin/STT3 pathway was evaluated. Immune recognition of HNSCC in vivo was examined in subcutaneous tumor-bearing C3H mice in the presence of let-7a/b and/or CTLA-4 antibody.

Results

The let-7 family were significantly down-regulated in the context of HNSCC, sharing a negative correlation with PD-L1 expression. Glycosylated PD-L1 was detected in HNSCC cells, which was reduced by let-7a/b over-expression. TCF-4, the target of let-7a/b, activated the β-catenin/STT3 pathway and promoted PD-L1 degradation. In vivo analysis demonstrated that let-7a/b over-expression potentiated anticancer immunotherapy by CTLA-4 blockade. Conclusions: Taken together, our findings highlight targeting let-7 family as a potential strategy to enhance immune checkpoint therapy for HNSCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。