CCP1, a Regulator of Tubulin Post-Translational Modifications, Potentially Plays an Essential Role in Cerebellar Development

CCP1 是微管蛋白翻译后修饰的调节剂,可能在小脑发育中发挥重要作用

阅读:5
作者:Bo Pang, Asuka Araki, Li Zhou, Hirohide Takebayashi, Takayuki Harada, Kyuichi Kadota

Abstract

The cytosolic carboxypeptidase (CCP) 1 protein, encoded by CCP1, is expressed in cerebellar Purkinje cells (PCs). The dysfunction of CCP1 protein (caused by CCP1 point mutation) and the deletion of CCP1 protein (caused by CCP1 gene knockout) all lead to the degeneration of cerebellar PCs, which leads to cerebellar ataxia. Thus, two CCP1 mutants (i.e., Ataxia and Male Sterility [AMS] mice and Nna1 knockout [KO] mice) are used as disease models. We investigated the cerebellar CCP1 distribution in wild-type (WT), AMS and Nna1 KO mice on postnatal days (P) 7-28 to investigate the differential effects of CCP protein deficiency and disorder on cerebellar development. Immunohistochemical and immunofluorescence studies revealed significant differences in the cerebellar CCP1 expression in WT and mutant mice of P7 and P15, but no significant difference between AMS and Nna1 KO mice. Electron microscopy showed slight abnormality in the nuclear membrane structure of PCs in the AMS and Nna1 KO mice at P15 and significant abnormality with depolymerization and fragmentation of microtubule structure at P21. Using two CCP1 mutant mice strains, we revealed the morphological changes of PCs at postnatal stages and indicated that CCP1 played an important role in cerebellar development, most likely via polyglutamylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。