Evaluation and optimization of PolyJet 3D-printed materials for cell culture studies

用于细胞培养研究的 PolyJet 3D 打印材料的评估和优化

阅读:5
作者:Emily R Currens, Michael R Armbruster, Andre D Castiaux, James L Edwards, R Scott Martin

Abstract

Use of 3D printing for microfluidics is a rapidly growing area, with applications involving cell culture in these devices also becoming of interest. 3D printing can be used to create custom-designed devices that have complex features and integrate different material types in one device; however, there are fewer studies studying the ability to culture cells on the various substrates that are available. This work describes the effect of PolyJet 3D-printing technology on cell culture of two cell lines, bovine pulmonary artery endothelial cells (BPAECs) and Madin-Darby Canine Kidney (MDCK) cells, on two different types of printed materials (VeroClear or MED610). It was found that untreated devices, when used for studies of 1 day or more, led to unsuccessful culture. A variety of device treatment methodologies were investigated, with the most success coming from the use of sodium hydroxide/sodium metasilicate solution. Devices treated with this cleaning step resulted in culture of BPAECs and MDCK cells that were more similar to what is obtained in traditional culture flasks (in terms of cell morphology, viability, and cell density). LC-MS/MS analysis (via Orbitrap MS) was used to determine potential leachates from untreated devices. Finally, the use of a fiber scaffold in the devices was utilized to further evaluate the treatment methodology and to also demonstrate the ability to perform 3D culture in such devices. This study will be of use for researchers wanting to utilize these or other cell types in PolyJet-based 3D-printed devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。