Quercetin Reprograms Immunometabolism of Macrophages via the SIRT1/PGC-1α Signaling Pathway to Ameliorate Lipopolysaccharide-Induced Oxidative Damage

槲皮素通过 SIRT1/PGC-1α 信号通路重编程巨噬细胞的免疫代谢以改善脂多糖诱导的氧化损伤

阅读:5
作者:Jing Peng, Zhen Yang, Hao Li, Baocheng Hao, Dongan Cui, Ruofeng Shang, Yanan Lv, Yu Liu, Wanxia Pu, Hongjuan Zhang, Jiongjie He, Xuehong Wang, Shengyi Wang

Abstract

The redox system is closely related to changes in cellular metabolism. Regulating immune cell metabolism and preventing abnormal activation by adding antioxidants may become an effective treatment for oxidative stress and inflammation-related diseases. Quercetin is a naturally sourced flavonoid with anti-inflammatory and antioxidant activities. However, whether quercetin can inhibit LPS-induced oxidative stress in inflammatory macrophages by affecting immunometabolism has been rarely reported. Therefore, the present study combined cell biology and molecular biology methods to investigate the antioxidant effect and mechanism of quercetin in LPS-induced inflammatory macrophages at the RNA and protein levels. Firstly, quercetin was found to attenuate the effect of LPS on macrophage proliferation and reduce LPS-induced cell proliferation and pseudopodia formation by inhibiting cell differentiation, as measured by cell activity and proliferation. Subsequently, through the detection of intracellular reactive oxygen species (ROS) levels, mRNA expression of pro-inflammatory factors and antioxidant enzyme activity, it was found that quercetin can improve the antioxidant enzyme activity of inflammatory macrophages and inhibit their ROS production and overexpression of inflammatory factors. In addition, the results of mitochondrial morphology and mitochondrial function assays showed that quercetin could upregulate the mitochondrial membrane potential, ATP production and ATP synthase content decrease induced by LPS, and reverse the mitochondrial morphology damage to a certain extent. Finally, Western blotting analysis demonstrated that quercetin significantly upregulated the protein expressions of SIRT1 and PGC-1α, that were inhibited by LPS. And the inhibitory effects of quercetin on LPS-induced ROS production in macrophages and the protective effects on mitochondrial morphology and membrane potential were significantly decreased by the addition of SIRT1 inhibitors. These results suggested that quercetin reprograms the mitochondria metabolism of macrophages through the SIRT1/PGC-1α signaling pathway, thereby exerting its effect of alleviating LPS-induced oxidative stress damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。