Synthetic Oligonucleotides Inhibit CRISPR-Cpf1-Mediated Genome Editing

合成寡核苷酸抑制 CRISPR-Cpf1 介导的基因组编辑

阅读:5
作者:Bin Li, Chunxi Zeng, Wenqing Li, Xinfu Zhang, Xiao Luo, Weiyu Zhao, Chengxiang Zhang, Yizhou Dong

Abstract

Previously, researchers discovered a series of anti-CRISPR proteins that inhibit CRISPR-Cas activity, such as Cas9 and Cpf1 (Cas12a). Herein, we constructed crRNA variants consisting of chemically modified DNA-crRNA and RNA-crRNA duplexes and identified that phosphorothioate (PS)-modified DNA-crRNA duplex completely blocked the function of Cpf1. More important, without prehybridization, these PS-modified DNA oligonucleotides showed the ability to suppress DNA double-strand breaks induced by two Cpf1 orthologs, AsCpf1 and LbCpf1. Time-dependent inhibitory effects were validated in multiple loci of different human cells. Further studies demonstrated that PS-modified DNA oligonucleotides were able to serve as Cpf1 inhibitors in a sequence-independent manner. Mechanistic studies indicate that PS-modified DNA oligonucleotides hinder target DNA binding and recognition by Cpf1. Consequently, these synthetic DNA molecules expand the sources of CRISPR inhibitors, providing a platform to inactivate Cpf1-mediated genome editing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。