XRCC2 Regulates Replication Fork Progression during dNTP Alterations

XRCC2 在 dNTP 改变期间调节复制叉进展

阅读:5
作者:Sneha Saxena, Kumar Somyajit, Ganesh Nagaraju

Abstract

RAD51 paralogs are essential for maintenance of genomic integrity through protection of stalled replication forks and homology-directed repair (HDR) of double-strand breaks. Here, we find that a subset of RAD51 paralogs, XRCC2 (FANCU) and its binding partner RAD51D, restrain active DNA synthesis during dinucleotide triphosphate (dNTP) alterations in a manner independent of HDR. The absence of XRCC2 is associated with increased levels of RRM2, the regulatory subunit of ribonucleotide reductase (RNR), and concomitantly high nucleotide pools, leading to unrestrained fork progression and accumulation of DNA damage during dNTP alterations. Mechanistically, this function is independent of redox signaling and RAD51-mediated fork reversal and is regulated by ataxia-telangiectasia and Rad3-related (ATR) signaling through phosphorylation of XRCC2 (Ser247). Together, these findings identify roles of RAD51 paralogs in the control of replication fork progression and maintenance of genome stability during nucleotide pool alterations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。