Distinct role of Sirtuin 1 (SIRT1) and Sirtuin 2 (SIRT2) in inhibiting cargo-loading and release of extracellular vesicles

Sirtuin 1 (SIRT1) 和 Sirtuin 2 (SIRT2) 在抑制细胞外囊泡的货物装载和释放方面发挥着不同的作用

阅读:5
作者:Byung Rho Lee, Bethany J Sanstrum, Yutao Liu, Sang-Ho Kwon

Abstract

Exosomes, vehicles for intercellular communication, are formed intracellularly within multivesicular bodies (MVBs) and are released upon fusion with the plasma membrane. For their biogenesis, proper cargo loading to exosomes and vesicle traffic for extracellular release are required. Previously we showed that the L-type lectin, LMAN2, limits trans-Golgi Network (TGN)-to-endosomes traffic of GPRC5B, an exosome cargo protein, for exosome release. Here, we identified that the protein deacetylase sirtuin 2 (SIRT2) as a novel interactor of LMAN2. Loss of SIRT2 expression resulted in exosomal release of LMAN2, a Golgi resident protein, along with increased exosomal release of GPRC5B. Furthermore, knockout of SIRT2 increased total number of extracellular vesicles (EVs), indicating increased MVB-to-EV flux. While knockout of SIRT1 increased EV release with enlarged late endolysosome, knockout of SIRT2 did not exhibit endolysosome enlargement for increased EV release. Taken together, our study suggests that SIRT2 regulates cargo loading to MVBs and MVB-to-EV flux through a mechanism distinct from that of SIRT1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。