Cancer cell sedimentation in 3D cultures reveals active migration regulated by self-generated gradients and adhesion sites

3D 培养中的癌细胞沉降揭示了由自生梯度和粘附位点调节的主动迁移

阅读:6
作者:Nikolaos M Dimitriou, Salvador Flores-Torres, Maria Kyriakidou, Joseph Matthew Kinsella, Georgios D Mitsis

Abstract

Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the bottom of the space. Understanding this poorly examined phenomenon may allow us to design better protocols to prevent it, as well as provide insights into the mechanobiology of cancer development. We conducted a multiscale experimental and mathematical examination of 3D cancer growth in triple negative breast cancer cells. Migration was examined in the presence and absence of Paclitaxel, in high and low adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled by hypothesizing active migration due to self-generated chemotactic gradients. Our results did not reject this hypothesis, whereby migration was likely to be regulated by the MAPK and TGF-β pathways. The mathematical model enabled us to describe the experimental data in absence (normalized error<40%) and presence of Paclitaxel (normalized error<10%), suggesting inhibition of random motion and advection in the latter case. Inhibition of sedimentation in low adhesion and co-culture experiments further supported the conclusion that cells actively migrated downwards due to the presence of signals produced by cells already attached to the adhesive glass surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。