RNA Binding Protein, HuR, Regulates SCN5A Expression Through Stabilizing MEF2C transcription factor mRNA

RNA 结合蛋白 HuR 通过稳定 MEF2C 转录因子 mRNA 来调节 SCN5A 表达

阅读:5
作者:Anyu Zhou, Guangbin Shi, Gyeoung-Jin Kang, An Xie, Hong Liu, Ning Jiang, Man Liu, Euy-Myoung Jeong, Samuel C Dudley Jr

Background

Although transcription is the initial process of gene expression, posttranscriptional gene expression regulation has also played a critical role for fine-tuning gene expression in a fast, precise, and cost-effective manner. Although the regulation of sodium channel α-subunit (SCN5A) mRNA expression has been studied at both transcriptional and pre-mRNA splicing levels, the molecular mechanisms governing SCN5A mRNA expression are far from clear.

Conclusions

In conclusion, our results suggested that HuR participates in a combined network at the DNA and RNA levels that regulates SCN5A mRNA expression. HuR upregulates MEF2C mRNA expression by protecting MEF2C mRNA from degradation, and consequently, the elevated MEF2C enhances SCN5A mRNA transcription.

Results

Herein, we show that, as evidenced by ribonucleoprotein immunoprecipitation assay, RNA binding protein Hu antigen R/ELAV like RNA binding protein 1 (HuR/ELAVL1) and myocyte enhancer factor-2C (MEF2C) transcription factor mRNA are associated. HuR positively regulated transcription factor MEF2C mRNA expression by protecting its mRNA from degradation. As demonstrated by both chromatin immunoprecipitation-quantitative polymerase chain reaction assay and an electrophoretic mobility shift assay, MEF2C enhanced SCN5A transcription by binding to a putative MEF2C binding site within SCN5A promoter region. Overexpression of HuR increased the expression of SCN5A mRNA, and this effect was attenuated by the presence of MEF2C small interfering RNA in cardiomyocytes. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。