Mesenchyme homeobox 1 mediates transforming growth factor-β (TGF-β)-induced smooth muscle cell differentiation from mouse mesenchymal progenitors

间充质同源框 1 介导转化生长因子-β (TGF-β) 诱导的小鼠间充质祖细胞向平滑肌细胞分化

阅读:8
作者:Kun Dong, Xia Guo, Weiping Chen, Amanda C Hsu, Qiang Shao, Jian-Fu Chen, Shi-You Chen

Abstract

Differentiation of smooth muscle cells (SMCs) is critical for proper vasculogenesis and angiogenesis. However, the molecular mechanisms controlling SMC differentiation are not completely understood. During embryogenesis, the transcription factor mesenchyme homeobox 1 (Meox1) is expressed in the early developing somite, which is one of the origins of SMCs. In the present study, we identified Meox1 as a positive regulator of SMC differentiation. We found that transforming growth factor-β (TGF-β) induces Meox1 expression in the initial phase of SMC differentiation of pluripotent murine C3H10T1/2 cells. shRNA-mediated Meox1 knockdown suppressed TGF-β-induced expression of SMC early markers, whereas Meox1 overexpression increased expression of these markers. Mechanistically, Meox1 promoted SMAD family member 3 (Smad3) nuclear retention during the early stage of TGF-β stimulation because Meox1 inhibited protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) and thereby prevented PPM1A-mediated Smad3 dephosphorylation. Meox1 appears to promote PPM1A degradation, leading to sustained Smad3 phosphorylation, thus allowing Smad3 to stimulate SMC gene transcription. In vivo, Meox1 knockdown in mouse embryos impaired SMC marker expression in the descending aorta of neonatal mice, indicating that Meox1 is essential for SMC differentiation during embryonic development. In summary, the transcriptional regulator Meox1 controls TGF-β-induced SMC differentiation from mesenchymal progenitor cells by preventing PPM1A-mediated Smad3 dephosphorylation, thereby supporting SMC gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。