Substituent-Guided Cluster Nuclearity for Tetranuclear Iron(III) Compounds with Flat {Fe4(μ3-O)2} Butterfly Core

具有平面 {Fe4(μ3-O)2} 蝴蝶核的四核铁 (III) 化合物的取代基引导簇核性

阅读:6
作者:Lorenzo Marchi, Stefano Carlino, Carlo Castellano, Francesco Demartin, Alessandra Forni, Anna M Ferretti, Alessandro Ponti, Alessandro Pasini, Luca Rigamonti

Abstract

The tetranuclear iron(III) compounds [Fe4(μ3-O)2(μ-LZ)4] (1-3) were obtained by reaction of FeCl3 with the shortened salen-type N2O2 tetradentate Schiff bases N,N'-bis(salicylidene)-o-Z-phenylmethanediamine H2LZ (Z = NO2, Cl and OMe, respectively), where the one-carbon bridge between the two iminic nitrogen donor atoms guide preferentially to the formation of oligonuclear species, and the ortho position of the substituent Z on the central phenyl ring selectively drives towards Fe4 bis-oxido clusters. All compounds show a flat almost-symmetric butterfly-like conformation of the {Fe4(μ3-O)2} core, surrounded by the four Schiff base ligands, as depicted by both the X-ray molecular structures of 1 and 2 and the optimized geometries of all derivatives as obtained by UM06/6-311G(d) DFT calculations. The strength of the antiferromagnetic exchange coupling constants between the iron(III) ions varies among the three derivatives, despite their magnetic cores remain structurally almost unvaried, as well as the coordination of the metal ions, with a distorted octahedral environment for the two-body iron ions, Feb, and a pentacoordination with trigonal bipyramidal geometry for the two-wing iron ions, Few. The different magnetic behavior within the series of examined compounds may be ascribed to the influence of the electronic features of Z on the electron density distribution (EDD) of the central {Fe4(μ3-O)2} core, substantiated by a Quantum Theory of Atoms In Molecules (QTAIM) topological analysis of the EDD, as obtained by UM06 calculations 1-3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。