Participation of MyD88 and interleukin-33 as innate drivers of Th2 immunity to Trichinella spiralis

MyD88 和白细胞介素-33 作为旋毛虫 Th2 免疫的先天驱动因素的参与

阅读:3
作者:Lisa K Scalfone, Hendrik J Nel, Lucille F Gagliardo, Jody L Cameron, Shaikha Al-Shokri, Cynthia A Leifer, Padraic G Fallon, Judith A Appleton

Abstract

Trichinella spiralis is a highly destructive parasitic nematode that invades and destroys intestinal epithelial cells, injures many different tissues during its migratory phase, and occupies and transforms myotubes during the final phase of its life cycle. We set out to investigate the role in immunity of innate receptors for potential pathogen- or danger-associated molecular patterns (PAMPs or DAMPs). Focusing on the MyD88-dependent receptors, which include Toll-like receptors (TLRs) and interleukin-1 (IL-1) family members, we found that MyD88-deficient mice expelled worms normally, while TLR2/4-deficient mice showed accelerated worm expulsion, suggesting that MyD88 was active in signaling pathways for more than one receptor during intestinal immunity. A direct role for PAMPs in TLR activation was not supported in a transactivation assay involving a panel of murine and human TLRs. Mice deficient in the IL-1 family receptor for the DAMP, IL-33 (called ST2), displayed reduced intestinal Th2 responses and impaired mast cell activation. IL-33 was constitutively expressed in intestinal epithelial cells, where it became concentrated in nuclei within 2 days of infection. Nuclear localization was an innate response to infection that occurred in intestinal regions where worms were actively migrating. Th2 responses were also compromised in the lymph nodes draining the skeletal muscles of ST2-deficient mice, and this correlated with increased larval burdens in muscle. Our results support a mechanism in which the immune system recognizes and responds to tissue injury in a way that promotes Th2 responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。