Sequential closed-loop Bayesian optimization as a guide for organic molecular metallophotocatalyst formulation discovery

顺序闭环贝叶斯优化作为有机分子金属光催化剂配方发现的指导

阅读:9
作者:Xiaobo Li #, Yu Che #, Linjiang Chen #, Tao Liu, Kewei Wang, Lunjie Liu, Haofan Yang, Edward O Pyzer-Knapp, Andrew I Cooper

Abstract

Conjugated organic photoredox catalysts (OPCs) can promote a wide range of chemical transformations. It is challenging to predict the catalytic activities of OPCs from first principles, either by expert knowledge or by using a priori calculations, as catalyst activity depends on a complex range of interrelated properties. Organic photocatalysts and other catalyst systems have often been discovered by a mixture of design and trial and error. Here we report a two-step data-driven approach to the targeted synthesis of OPCs and the subsequent reaction optimization for metallophotocatalysis, demonstrated for decarboxylative sp3-sp2 cross-coupling of amino acids with aryl halides. Our approach uses a Bayesian optimization strategy coupled with encoding of key physical properties using molecular descriptors to identify promising OPCs from a virtual library of 560 candidate molecules. This led to OPC formulations that are competitive with iridium catalysts by exploring just 2.4% of the available catalyst formulation space (107 of 4,500 possible reaction conditions).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。