Endothelin Receptor A Antagonism Prevents Damage to Glycogen-Rich Placental Cells Following Uterine Ischemia-Reperfusion in the Rat

内皮素受体 A 拮抗剂可防止大鼠子宫缺血再灌注后富含糖原的胎盘细胞受损

阅读:9
作者:Larry G Thaete, Saira Khan, Mark G Neerhof

Abstract

Fetal growth restriction (FGR) is a common cause of perinatal morbidity and mortality. Suboptimal uteroplacental perfusion is the most commonly identified cause of FGR, and ischemic lesions are often observed in placentas from pregnancies complicated by FGR. Ischemia followed by reperfusion is a strong stimulus to the production of the vasoconstrictor endothelin 1 (ET-1) which has been implicated in several models of FGR. We sought to investigate oxidative stress and placental morphology in a rat model of ischemia-reperfusion (I/R)-induced FGR and to evaluate the role of ET-1 in the observed pathology. Unilateral uterine I/R (30 min) was conducted, with and without simultaneous ET-1 receptor A (ETA) antagonism, on pregnant rats at gestation day 17. Placental tissues collected 24 hours later were evaluated immunohistochemically for oxidative damage. Tissue pathology was studied using quantitative morphometry. Glycogen-rich cellular areas in the placental junctional zone exhibited only 50% intact cells (P < .001) in both uterine horns following unilateral I/R, compared to controls. ETA antagonism prevented damage to the glycogen-rich cellular areas. Oxidative damage in response to I/R was prominent in the labyrinthine layer in both uterine horns and was not affected by ETA antagonism. We conclude that glycogen-rich cellular areas of the placental junctional zone are particularly vulnerable to damage from uterine I/R in the rat. Nucleic acid oxidative damage in the labyrinth is a prominent effect of uterine I/R. ETA antagonism protects placental cellular integrity during I/R challenge but does not prevent nucleic acid oxidative damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。