Interplay between Maternal and Neonatal Vitamin D Deficiency and Vitamin-D-Related Gene Polymorphism with Neonatal Birth Anthropometry

母亲和新生儿维生素 D 缺乏症及维生素 D 相关基因多态性与新生儿出生体格测量之间的相互作用

阅读:5
作者:Siew Siew Lee, King Hwa Ling, Maiza Tusimin, Raman Subramaniam, Kartini Farah Rahim, Su Peng Loh

Abstract

Vitamin D deficiency during pregnancy has been associated with poor foetal growth and neonatal birth anthropometry. However, the associations were inconsistent and could be confounded by neonatal vitamin D status and genetic factors. Until recently, limited studies have concomitantly examined the effect of maternal and neonatal vitamin D deficiency and vitamin D-related single nucleotide polymorphisms (SNPs) on neonatal birth anthropometry. This study aims to examine the independent and combined effects of maternal and neonatal vitamin D deficiency and vitamin-D-related SNPs on neonatal birth anthropometry. This cross-sectional study included 217 mother−neonate dyads recruited from Hospital Serdang, Selangor, Malaysia, between 2015 and 2017. Plasma 25-hydroxyvitamin D (25OHD) concentration was measured in maternal and umbilical cord blood using ultra-high-performance liquid chromatography (UHPLC). Maternal and neonatal vitamin D Receptor (VDR) SNP (rs2228570) genotypes were determined using high-resolution melting (HRM). Group-specific component (GC) SNPs (rs4588 and rs7041) genotypes were determined using restriction fragment length polymorphism. Our results showed that: (1) maternal vitamin D deficiency (25OHD < 30 nmol/L) was inversely associated with birth weight, head circumference and crown−heel length; (2) neonatal SNPs, VDR rs2228570 and GC rs4588, were significantly associated with birth weight and head circumference, respectively; and (3) a potential interaction was observed between maternal VDR rs2228570 with maternal vitamin D deficiency on head circumference. These findings suggest that the underlying mechanisms of vitamin D on foetal growth are likely to be localised in the maternal compartment, mediated through the placenta, rather than through cellular mechanisms within the foetus. Further large-scale studies are warranted to validate and extend these findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。