Octanoic acid mitigates busulfan-induced blood-testis barrier damage by alleviating oxidative stress and autophagy

辛酸通过减轻氧化应激和自噬减轻白消安引起的血睾屏障损伤

阅读:5
作者:Chun Cao #, Hong Zhang #, Zhaowanyue He #, Kemei Zhang, Zhang Qian, Jiaming Shen, Lu Zheng, Mengqi Xue, Shanshan Sun, Chuwei Li, Wei Zhao, Jun Jing, Rujun Ma, Xie Ge, Bing Yao

Background

The management of male infertility continues to encounter an array of challenges and constraints, necessitating an in-depth exploration of novel therapeutic targets to enhance its efficacy. As an eight-carbon medium-chain fatty acid, octanoic acid (OCA) shows promise for improving health, yet its impact on spermatogenesis remains inadequately researched.

Conclusions

This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.

Methods

Mass spectrometry was performed to determine the fatty acid content and screen for a pivotal lipid component in the serum of patients with severe spermatogenesis disorders. The sperm quality was examined, and histopathological analysis and biotin tracer tests were performed to assess spermatogenesis function and the integrity of the blood-testis barrier (BTB) in vivo. Cell-based in vitro experiments were carried out to investigate the effects of OCA administration on Sertoli cell dysfunction. This research aimed to elucidate the mechanism by which OCA may influence the function of Sertoli cells.

Results

A pronounced reduction in OCA content was observed in the serum of patients with severe spermatogenesis disorders, indicating that OCA deficiency is related to spermatogenic disorders. The protective effect of OCA on reproduction was tested in a mouse model of spermatogenic disorder induced by busulfan at a dose 30 mg/kg body weight (BW). The mice in the study were separated into distinct groups and administered varying amounts of OCA, specifically at doses of 32, 64, 128, and 256 mg/kg BW. After evaluating sperm parameters, the most effective dose was determined to be 32 mg/kg BW. In vivo experiments showed that treatment with OCA significantly improved sperm quality, testicular histopathology and BTB integrity, which were damaged by busulfan. Moreover, OCA intervention reduced busulfan-induced oxidative stress and autophagy in mouse testes. In vitro, OCA pretreatment (100 µM) significantly ameliorated Sertoli cell dysfunction by alleviating busulfan (800 µM)-induced oxidative stress and autophagy. Moreover, rapamycin (5 µM)-induced autophagy led to Sertoli cell barrier dysfunction, while OCA administration exerted a protective effect by alleviating autophagy. Conclusions: This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。