Genome-wide association studies of root system architecture traits in a broad collection of Brassica genotypes

多种芸苔属植物基因型的根系结构特征的全基因组关联研究

阅读:5
作者:Chunxiao Yang, Rudolph Fredua-Agyeman, Sheau-Fang Hwang, Linda Y Gorim, Stephen E Strelkov

Abstract

The root systems of Brassica species are complex. Eight root system architecture (RSA) traits, including total root length, total root surface area, root average diameter, number of tips, total primary root length, total lateral root length, total tertiary root length, and basal link length, were phenotyped across 379 accessions representing six Brassica species (B. napus, B. juncea, B. carinata, B. oleracea, B. nigra, and B. rapa) using a semi-hydroponic system and image analysis software. The results suggest that, among the assessed species, B. napus and B. oleracea had the most intricate and largest root systems, while B. nigra exhibited the smallest roots. The two species B. juncea and B. carinata shared comparable root system complexity and had root systems with larger root diameters. In addition, 313 of the Brassica accessions were genotyped using a 19K Brassica single nucleotide polymorphism (SNP) array. After filtering by TASSEL 5.0, 6,213 SNP markers, comprising 5,103 markers on the A-genome (covering 302,504 kb) and 1,110 markers on the C-genome (covering 452,764 kb), were selected for genome-wide association studies (GWAS). Two general linear models were tested to identify the genomic regions and SNPs associated with the RSA traits. GWAS identified 79 significant SNP markers associated with the eight RSA traits investigated. These markers were distributed across the 18 chromosomes of B. napus, except for chromosome C06. Sixty-five markers were located on the A-genome, and 14 on the C-genome. Furthermore, the major marker-trait associations (MTAs)/quantitative trait loci (QTLs) associated with root traits were located on chromosomes A02, A03, and A06. Brassica accessions with distinct RSA traits were identified, which could hold functional, adaptive, evolutionary, environmental, pathological, and breeding significance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。