Whole-genome Sequencing of SARS-CoV-2: Using Phylogeny and Structural Modeling to Contextualize Local Viral Evolution

SARS-CoV-2 全基因组测序:利用系统发育和结构建模来理解局部病毒进化的背景

阅读:6
作者:Ashley E Nazario-Toole, Hui Xia, Thomas F Gibbons

Conclusion

The workflow presented here is designed to enable DoD public health officials to track viral evolution and conduct near real-time evaluation of future outbreaks. The generation of molecular epidemiological sequence data is critical for the development of disease intervention strategies-most notably, vaccine design. Overall, we present a streamlined sequencing and bioinformatics methodology aimed at improving long-term readiness efforts in the DoD.

Methods

We developed a sequencing and bioinformatics workflow for molecular epidemiological SARS-CoV-2 surveillance using excess clinical specimens collected under an institutional review board exempt protocol at Joint Base San Antonio, Lackland AFB. This workflow includes viral RNA isolation, viral load quantification, tiling-based next-generation sequencing, sequencing and bioinformatics analysis, and data visualization via phylogenetic trees and protein mapping.

Results

Sequencing of 37 clinical specimens collected at JBSA/Lackland revealed that by June 2020, SAR-CoV-2 strains carrying the 614G mutation were the predominant cause of local coronavirus disease 2019 infections. We identified 109 nucleotide changes in the coding region of the SARS-CoV-2 genome (which lead to 63 unique, non-synonymous amino acid mutations), one mutation in the 5'-untranslated region (UTR), and two mutations in the 3'UTR. Furthermore, we identified and mapped six additional spike protein amino acid changes-information which could potentially aid vaccine design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。