Modulation of microglial polarization by sequential targeting surface-engineered exosomes improves therapy for ischemic stroke

通过顺序靶向表面工程外泌体调节小胶质细胞极化可改善缺血性中风的治疗

阅读:6
作者:Xintong Liu, Yunni Hao, Zhixuan Huang, Yijie Shi, Chang Su, Liang Zhao

Abstract

Microglia are important cells that act on regulating neuroinflammation and neurofunction after the induction of ischemic stroke (IS). Consequently, the efficient accumulation of drugs within ischemic regions, particularly in microglia, serves as a valuable approach for achieving effective therapy by attenuating microglia-mediated cerebral ischemic injury. In this study, we designed mannose (man)-conjugated luteolin (lut)-loaded platelet-derived exosomes (lut/man-pEXO) as surface engineered multifunctional cascade-delivery drug carriers to target ischemic blood vessels and subsequent microglia to enhance drug accumulation and induce neuroprotection of neurovascular unit (NVU) against IS. The results revealed that as platelets naturally gathered in pathological ischemic cerebral vessels, lut/man-pEXO could bind to platelets and efficiently target ischemic injury sites. Moreover, owing to the selective binding affinity of mannose present in lut/man-pEXO towards the mannose receptor expressed on microglia, lut/man-pEXO exhibited superior microglia-targeting properties, inducing the increased uptake of lut by microglia. As a result, lut/man-pEXO regulated microglia by inhibiting the activation of detrimental M1 and promoting the transition towards the anti-inflammatory type (M2), thus attenuating ischemic damage of NVU by reducing the infarct area, rescuing the damage of blood-brain barrier (BBB) and preventing inflammatory transformation of astrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。