Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions in vivo

用香芹酚抑制 TRPM7 可抑制体内胶质母细胞瘤功能

阅读:8
作者:Rahmah Alanazi, Hirokazu Nakatogawa, Haitao Wang, Delphine Ji, Zhengwei Luo, Brian Golbourn, Zhong-Ping Feng, James T Rutka, Hong-Shuo Sun

Abstract

Glioblastoma (GBM) is the most prevalent and aggressive type of primary human brain tumours originating in the central nervous system. Despite the fact that current treatments involve surgery, chemotherapy (Temozolomide), and radiation therapy, the prognosis for patients diagnosed with GBM remains extremely poor. The standard treatment is not only unable to completely eradicate the tumour cells, but also tumour recurrence after surgical resection presents a major challenge. Furthermore, adjuvant therapies including radiation and chemotherapy have high cytotoxicity which causes extensive damage to surrounding healthy tissues and treatment is usually halted before GBM is fully eradicated. Finally, most GBM cases demonstrate temozolomide resistance, a common reason for GBM treatment failure. Therefore, there is an urgent need to develop a suitable alternative therapy that targets GBM specifically and has low cytotoxicity for healthy cells. We previously reported that transient receptor potential melastatin 7 (TRPM7) channels are aberrantly upregulated in GBM, and inhibition of TRPM7 reduced GBM cellular functions including proliferation, migration, and invasion. This suggests TRPM7 is a potential therapeutic target for GBM treatment. In this study, we investigated the effects of the TRPM7 inhibitor, carvacrol, on human GBM cell lines U87 and U251 in vivo. With the use of a flank xenograft GBM mouse model, we demonstrated that carvacrol significantly reduced the tumour size in both mice injected with U87 and U251 cells, decreased p-Akt protein level and increased p-GSK3β protein levels. Therefore, these results suggest that carvacrol may have therapeutic potential for GBM treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。