FMOD Alleviates Depression-Like Behaviors by Targeting the PI3K/AKT/mTOR Signaling After Traumatic Brain Injury

FMOD 通过靶向 PI3K/AKT/mTOR 信号传导缓解创伤性脑损伤后的抑郁样行为

阅读:7
作者:Xuekang Huang #, Ziyu Zhu #, Mengran Du, Chenrui Wu, Jiayuanyuan Fu, Jie Zhang, Weilin Tan, Biying Wu, Lian Liu, Z B Liao

Abstract

Depression frequently occurs following traumatic brain injury (TBI). However, the role of Fibromodulin (FMOD) in TBI-related depression is not yet clear. Previous studies have suggested FMOD as a potential key factor in TBI, yet its association with depression post-TBI and underlying mechanisms are not well understood. Serum levels of FMOD were measured in patients with traumatic brain injury using qPCR. The severity of depression was assessed using the self-depression scale (SDS). Neurological function, depressive state, and cognitive function in mice were assessed using the modified Neurological Severity Score (mNSS), forced swimming test (FST), tail suspension test (TST), Sucrose Preference Test (SPT), and morris water maze (MWM). The morphological features of mouse hippocampal synapses and neuronal dendritic spines were revealed through immunofluorescence, transmission electron microscopy, and Golgi-Cox staining. The protein expression levels of FMOD, MAP2, SYP, and PSD95, as well as the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway, were detected through Western blotting. FMOD levels were decreased in TBI patients' serum. Overexpression of FMOD preserved neuronal function and alleviated depression-like behaviour, increased synaptic protein expression, and induced ultrastructural changes in hippocampal neurons. The increased phosphorylation of PI3K, AKT, and mTOR suggested the involvement of the PI3K/AKT/mTOR signaling pathway in FMOD's protective effects. FMOD exhibits potential as a therapeutic target for depression related to TBI, with its protective effects potentially mediated through the PI3K/AKT/mTOR signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。