Genes Involved in the Transcriptional Regulation of Pluripotency Are Expressed in Malignant Tumors of the Uterine Cervix and Can Induce Tumorigenic Capacity in a Nontumorigenic Cell Line

参与多能性转录调控的基因在宫颈恶性肿瘤中表达,并可在非致瘤细胞系中诱导致瘤能力

阅读:6
作者:Graciela Ruiz, Heriberto A Valencia-González, Delia Pérez-Montiel, Felipe Muñoz, Rodolfo Ocadiz-Delgado, Jorge Fernández-Retana, Carlos Pérez-Plasencia, Osbaldo Reséndis-Antonio, Patricio Gariglio, Alejandro García-Carrancá

Abstract

Transcription factors OCT4, SOX2, KLF4, C-MYC, and NANOG (OSKM-N) regulate pluripotency and stemness, and their ectopic expression reprograms human and murine fibroblasts that constitute the key of regenerative medicine. To determine their contribution to cell transformation, we analyzed the gene expression profiles of these transcription factors in cervical cancer samples and found that they are preferentially expressed in the tumor component. Also, cancer stem cell-enriched cultures grown as sphere cultures showed overexpression of OSKM-N genes. Importantly, we observed that lentiviral-mediated transduction of these factors confers, to a nontumorigenic immortalized human cell line, properties of cancer stem cells as the ability to form tumors in a mouse model. When we performed a meta-analysis using microarray data from cervical cancer biopsies and normal tissues, we found that the expression of OSKM-N and some target genes allowed separating tumor and normal tissues between samples, which enhanced the importance of OSKM-N in the tumorigenesis. Finally, we analyzed and compared both transcript and protein expression profiles of these factors within a cohort of patients with cervical cancer. To our knowledge, this is the first time that the expression of OSKM-N is described to induce one of the main characteristics of the cancer stem cell, the tumorigenicity. And, more importantly, its exogenous expression in a nontumorigenic cell line is sufficient to induce a tumorigenic phenotype; furthermore, the differential expression of this transcription factor distinguishes tumor tissue and normal tissue in cervical samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。