Photocontrolled Reversible Amyloid Fibril Formation of Parathyroid Hormone-Derived Peptides

甲状旁腺激素衍生肽的光控可逆淀粉样蛋白原纤维形成

阅读:5
作者:André Paschold, Moritz Schäffler, Xincheng Miao, Luis Gardon, Stephanie Krüger, Henrike Heise, Merle I S Röhr, Maria Ott, Birgit Strodel, Wolfgang H Binder

Abstract

Peptide fibrillization is crucial in biological processes such as amyloid-related diseases and hormone storage, involving complex transitions between folded, unfolded, and aggregated states. We here employ light to induce reversible transitions between aggregated and nonaggregated states of a peptide, linked to the parathyroid hormone (PTH). The artificial light-switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) is embedded into a segment of PTH, the peptide PTH25-37, to control aggregation, revealing position-dependent effects. Through in silico design, synthesis, and experimental validation of 11 novel PTH25-37-derived peptides, we predict and confirm the amyloid-forming capabilities of the AMPB-containing peptides. Quantum-chemical studies shed light on the photoswitching mechanism. Solid-state NMR studies suggest that β-strands are aligned parallel in fibrils of PTH25-37, while in one of the AMPB-containing peptides, β-strands are antiparallel. Simulations further highlight the significance of π-π interactions in the latter. This multifaceted approach enabled the identification of a peptide that can undergo repeated phototriggered transitions between fibrillated and defibrillated states, as demonstrated by different spectroscopic techniques. With this strategy, we unlock the potential to manipulate PTH to reversibly switch between active and inactive aggregated states, representing the first observation of a photostimulus-responsive hormone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。