Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus

性别和 DTNBP1(dysbindin)无效基因突变对小鼠皮层和海马发育中 GluN2B-GluN2A 转换的影响

阅读:5
作者:Duncan Sinclair, Joseph Cesare, Mary McMullen, Greg C Carlson, Chang-Gyu Hahn, Karin E Borgmann-Winter

Background

Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia differentially impact males and females and are highly heritable. The ways in which sex and genetic vulnerability influence the pathogenesis of these disorders are not clearly understood. The n-methyl-d-aspartate (NMDA) receptor pathway has been implicated in schizophrenia and autism spectrum disorders and changes dramatically across postnatal development at the level of the GluN2B-GluN2A subunit "switch" (a shift from reliance on GluN2B-containing receptors to reliance on GluN2A-containing receptors). We investigated whether sex and genetic vulnerability (specifically, null mutation of DTNBP1 [dysbindin; a possible susceptibility gene for schizophrenia]) influence the developmental GluN2B-GluN2A switch.

Conclusions

Sex and DTNBP1 mutation influence the GluN2B-GluN2A switch at the synapse in a brain-region-specific fashion involving pY1472-GluN2B, Fyn, and PLCγ. This highlights the possible mechanisms through which risk factors may mediate their effects on vulnerability to disorders of NMDA receptor dysfunction.

Methods

Subcellular fractionation to enrich for postsynaptic density (PSD), together with Western blotting and kinase assay, were used to investigate the GluN2B-GluN2A switch in the cortex and hippocampus of male and female DTNBP1 null mutant mice and their wild-type littermates. Main effects of sex and DTNBP1 genotype, and interactions with age, were assessed using factorial ANOVA.

Results

Sex differences in the GluN2B-GluN2A switch emerged across development at the frontal cortical synapse, in parameters related to GluN2B. Males across genotypes displayed higher GluN2B:GluN2A and GluN2B:GluN1 ratios (p < 0.05 and p < 0.01, respectively), higher GluN2B phosphorylation at Y1472 (p < 0.01), and greater abundance of PLCγ (p < 0.01) and Fyn (p = 0.055) relative to females. In contrast, effects of DTNBP1 were evident exclusively in the hippocampus. The developmental trajectory of GluN2B was disrupted in DTNBP1 null mice (genotype × age interaction p < 0.05), which also displayed an increased synaptic GluN2A:GluN1 ratio (p < 0.05) and decreased PLCγ (p < 0.05) and Fyn (only in females; p < 0.0005) compared to wild-types. Conclusions: Sex and DTNBP1 mutation influence the GluN2B-GluN2A switch at the synapse in a brain-region-specific fashion involving pY1472-GluN2B, Fyn, and PLCγ. This highlights the possible mechanisms through which risk factors may mediate their effects on vulnerability to disorders of NMDA receptor dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。