Protein engineering of improved prolyl endopeptidases for celiac sprue therapy

蛋白质工程改良脯氨酰内肽酶用于乳糜泻治疗

阅读:4
作者:Jennifer Ehren, Sridhar Govindarajan, Belén Morón, Jeremy Minshull, Chaitan Khosla

Abstract

Due to their unique ability to cleave immunotoxic gluten peptides endoproteolytically, prolyl endopeptidases (PEPs) are attractive oral therapeutic candidates for protecting celiac sprue patients from the toxic effects of dietary gluten. Enhancing the activity and stability of PEPs under gastric conditions (low pH, high pepsin concentration) is a challenge for protein engineers. Using a combination of sequence- and structure-based approaches together with machine learning algorithms, we have identified improved variants of the Sphingomonas capsulata PEP, a target of clinical relevance. Through two rounds of iterative mutagenesis and analysis, variants with as much as 20% enhanced specific activity at pH 4.5 and 200-fold greater resistance to pepsin were identified. Our results vividly reinforce the concept that conservative changes in proteins, especially in hydrophobic residues within tightly packed regions, can profoundly influence protein structure and function in ways that are difficult to predict entirely from first principles and must therefore be optimized through iterative design and analytical cycles. Incubation with whole wheat bread under simulated gastric conditions also suggests that some variants have pharmacologically significant improvements in gluten detoxification activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。