Phillyrin and its metabolites treat pulmonary embolism by targeting PLCβ3 to inhibit platelet activation

连翘苷及其代谢物通过靶向 PLCβ3 抑制血小板活化来治疗肺栓塞

阅读:8
作者:Junjie Li, Yixu Wang, Jiawei Li, Sihan Xu, Shou Wang, Wenjuan Liu, Li Fu, Min Jiang, Gang Bai

Aim of the study

This study aimed to verify the antithrombotic effect of LQ and further explore the material basis and target mechanism of its antithrombotic effect using various biological

Conclusion

This study not only proposes and validates the antithrombotic effect of LQ for the first time but also finds that phillyrin and phillygenin are the main pharmacological substances through which LQ exerts antithrombotic activity and reveals a novel mechanism by which they exert antiplatelet activity by directly targeting and inhibiting PLCβ3 activity. These findings significantly contribute to our understanding of the therapeutic potential of phillyrin and provide important clues for the discovery and development of new antiplatelet drugs.

Methods

An epinephrine-collagen-thrombin-induced mouse model of acute pulmonary embolism (APE) was established to study the effects of LQ on thrombus development. A UPLC/Q/TOF-MS screening and identification system based on the inhibition of platelet aggregation and Ca2+ antagonism was established to determine the pharmacodynamic components of LQ that inhibit platelet activation. The inhibitory effect of active ingredients on platelet activation, and the determination of the target of their inhibitory effect on platelet activation have been studied using chemical proteomics. Furthermore, based on the structure and function of the target protein, a multidisciplinary approach was adopted to analyze the molecular mechanism of active ingredient binding to target proteins and to evaluate the effects of active ingredients on the downstream signaling pathways of target proteins.

Results

LQ showed significant anticoagulant effects in APE model mice. Phillyrin and phillygenin were the antiplatelet-activating components of LQ. PLCβ3 was identified as a target for inhibiting platelet activation by phillyrin and its metabolites. The mechanism underlying the effect involves phillyrin and its metabolites inhibiting PLCβ3 activity by blocking the binding of PLCβ3 to Gαq through non-covalently targeting the ASN260 of PLCβ3, thus inhibiting the downstream Gαq-PLCβ3-Ca2+ signaling pathway, effectively hindering platelet activation and therefore playing an anticoagulant role.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。