Artemisinin and its derivatives modulate glucose homeostasis and gut microbiota remodeling in a nutritional context

青蒿素及其衍生物在营养背景下调节葡萄糖稳态和肠道菌群重塑

阅读:23
作者:Yajie Guo, Ying Chen, Dan Wang, Guangnan Liu, Yuhua Chen, Changfeng Peng, Tingting Cao, Yuewei Liu, Xiaoxiao Hu, Xinyue Xu, Yuebin Ke, Suli Huang, Tong Wang, Ziquan Lv

Abstract

Glucose metabolic disorders, prevalent in numerous metabolic diseases, have become a pressing global public health concern. Artemisinin (ART) and its derivatives, including artesunate (ARTs) and artemether (ARTe), have shown potential as metabolic regulators. However, the specific effects of ART and its derivatives on glucose metabolism under varying nutritional conditions and the associated molecular mechanisms remain largely unexplored. In this study, we examined the impact of ART, ARTs, and ARTe on glucose homeostasis using a mouse model subjected to different dietary regimens. Our findings revealed that ART, ARTs, and ARTe increased blood glucose levels in mice on a normal-chow diet (ND) while mitigating glucose imbalances in high-fat diet (HFD) mice. Notably, treatment with ART, ARTs, and ARTe had contrasting effects on in vivo insulin signaling, impairing it in ND mice and enhancing it in HFD mice. Moreover, the composition of gut microbiota underwent significant alterations following administration of ART and its derivatives. In ND mice, these treatments reduced the populations of bacteria beneficial for improving glucose homeostasis, including Parasutterella, Alloprevotella, Bifidobacterium, Ileibacterium, and Alistipes. In HFD mice, there was an increase in the abundance of beneficial bacteria (Alistipes, Akkermanisia) and a decrease in bacteria known to negatively impact glucose metabolism (Coprobacillus, Helicobacter, Mucispirillum, Enterorhabdus). Altogether, ART, ARTs, and ARTe exhibited distinct effects on the regulation of glucose metabolism, depending on the nutritional context, and these effects were closely associated with modifications in gut microbiota composition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。