Salidroside protects against osteoporosis in ovariectomized rats by inhibiting oxidative stress and promoting osteogenesis via Nrf2 activation

红景天苷通过抑制氧化应激和通过激活 Nrf2 促进成骨作用来预防卵巢切除大鼠的骨质疏松症

阅读:6
作者:Yi-Fei Wang, Yue-Yue Chang, Xue-Meng Zhang, Meng-Ting Gao, Qiu-Lan Zhang, Xin Li, Li Zhang, Wei-Feng Yao

Background

Osteoporosis (OP) is characterized as low bone mass, bone microarchitecture breakdown and bone fragility. The increase of oxidative stress could lead to breakdown in the balance of bone formation and resorption which gives rise to OP. Nrf2 is a transcription factor which takes part in oxidative stress and recently was reported that it can regulate the occurrence of OP. Salidroside (SAL) with the efficacies of anti-oxidation, anti-aging and bone-protection is one of the active ingredients in Ligustri Lucidi Fructus, a traditional Chinese medicinal herb. Nevertheless, few studies have explored the potential mechanism of SAL preventing OP development from the perspective of oxidative stress intervention.

Conclusion

SAL could protect against OP by inhibiting oxidative stress, promoting osteogenesis through the up-regulation of Nrf2 and intervening galactose metabolism and fatty acid metabolism. Our study implied that SAL may be a potential drug to treat OP.

Methods

A tert-butyl hydroperoxide (t-BHP)-induced oxidative stress model was applied for investigating the effects of SAL in vitro, and an ovariectomized (OVX) model was used for in vivo study on the effect of SAL for OP. Related pharmacodynamic actions and molecular mechanisms of SAL were explored in both rat osteoblasts (ROBs) and OVX rats. Network biology and cell metabolomics were performed for further investigating the correlation and association among potential biomarkers, targets and pathways.

Purpose

This study aimed to investigate the pharmacological effect and molecular mechanisms of SAL on OP. Study designs and

Results

SAL reduced levels of ROS and lipid peroxidation (LPO), increased activities of antioxidant enzymes like GPx and SOD, and enhanced osteogenic differentiation in t-BHP-induced ROBs and OVX rats. Mechanistic studies showed SAL prevented OP development and reduced oxidative damage in ROBs and OVX rats through up-regulating Nrf2 expression and facilitating its nuclear translocation. The joint analysis of network biology and cell metabolomics revealed that galactose metabolism and fatty acid metabolism could be the major influenced pathways following treatment with SAL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。