Activation of pyramidal neurons in the infralimbic cortex alleviates LPS-induced depressive-like behavior in mice

激活下边缘皮质的锥体神经元可减轻小鼠 LPS 诱发的抑郁样行为

阅读:25
作者:Peng-Fei Zhang, Wen-Yong You, Yong-Jing Gao, Xiao-Bo Wu

Abstract

The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in the IL cortex. Electrophysiological recordings revealed a significant decrease in the intrinsic excitability of layer V pyramidal neurons in the IL following systemic LPS exposure. Importantly, chemogenetic activation of IL pyramidal neurons ameliorated LPS-induced depressive-like behavior. Additionally, LPS administration significantly increased microglial activity in the IL, as evidenced by a greater number of Ionized calcium binding adaptor molecule-1 (IBA-1)-positive cells. Morphometric analysis further unveiled enlarged soma, decreased branch numbers, and shorter branch lengths of microglial cells in the IL cortex following LPS exposure. Moreover, the activation of pyramidal neurons by clozapine-N-oxide increased the microglia branch length but did not change branch number or cytosolic area. These results collectively suggest that targeted activation of pyramidal neurons in the IL cortex mitigates microglial response and ameliorates depressive-like behaviors induced by systemic LPS administration. Therefore, our findings offer potential therapeutic targets for the development of interventions aimed at alleviating depressive symptoms by modulating IL cortical circuitry and microglial activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。