Role of Hydrophobic Modification in Spermine-Based Poly(β-amino ester)s for siRNA Delivery and Their Spray-Dried Powders for Inhalation and Improved Storage

疏水改性在用于 siRNA 递送的精胺基聚(β-氨基酯)及其用于吸入和改善储存的喷雾干燥粉末中的作用

阅读:9
作者:Yao Jin, Xiaoxuan Wang, Adrian P E Kromer, Joschka T Müller, Christoph Zimmermann, Zehua Xu, Achim Hartschuh, Friederike Adams, Olivia M Merkel

Abstract

After RNAi was first discovered over 20 years ago, siRNA-based therapeutics are finally becoming reality. However, the delivery of siRNA has remained a challenge. In our previous research, we found that spermine-based poly(β-amino ester)s are very promising for siRNA delivery. However, the role of hydrophobic modification in siRNA delivery of spermine-based poly(β-amino ester)s is not fully understood yet. In the current work, we synthesized spermine-based poly(β-amino ester)s with different percentages of oleylamine side chains, named P(SpOABAE). The chemical structures of the polymers were characterized by 1H NMR. The polymers showed efficient siRNA encapsulation determined by SYBR Gold assays. The hydrodynamic diameters of the P(SpOABAE) polyplexes from charge ratio N/P 1 to 20 were 30-100 nm except for aggregation phenomena observed at N/P 3. Morphology of the polyplexes was visualized by atomic force microscopy, and cellular uptake was determined by flow cytometry in H1299 cells, where all the polyplexes showed significantly higher cellular uptake than hyperbranched polyethylenimine (25 kDa). The most hydrophobic P(SpOABAE) polyplexes were able to achieve more than 90% GFP knockdown in H1299/eGFP cells. The fact that gene silencing efficacy increased with hydrophobicity but cellular uptake was affected by both charge and hydrophobic interactions highlights the importance of endosomal escape. For pulmonary administration and improved storage stability, the polyplexes were spray-dried. Results confirmed the maintained siRNA activity after storage for 3 months at room temperature, indicating potential for dry powder inhalation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。