Improved arterial flow-mediated dilation after exertion involves hydrogen peroxide in overweight and obese adults following aerobic exercise training

超重和肥胖成人接受有氧运动训练后,运动后动脉血流介导扩张的改善与过氧化氢有关

阅读:5
作者:Austin T Robinson, Nina C Franklin, Edita Norkeviciute, Jing Tan Bian, James C Babana, Mary R Szczurek, Shane A Phillips

Conclusion

Aerobic exercise prevents acute exertion-induced arterial dysfunction in overweight and obese adults via a phenotypic switch from nitric oxide-mediated dilation at rest to a predominately H2O2-mediated dilation after acute physical exertion.

Methods

Twenty-five overweight and obese adults (BMI 30.5 ± 7.2 years) were assigned to 8 weeks of aerobic training or to a control group. Brachial artery flow-mediated dilation (FMD) was assessed before and after acute leg press exercise at weeks 0 and 8. Gluteal adipose biopsies were performed at rest and post acute leg press to measure microvessel FMD with and without nitric oxide synthase inhibition via L-nitroarginine methyl ester or hydrogen peroxide (H2O2) scavenging with Catalase. Microvessel nitric oxide and H2O2 production were assessed via fluorescence microscopy.

Objective

Acute strenuous physical exertion impairs arterial function in sedentary adults. We investigated the effects of 8 weeks of regular aerobic exercise training on acute physical exertion-induced arterial dysfunction in sedentary, overweight, and obese adults.

Results

Brachial artery dilation was reduced post acute leg press at week 0 in the aerobic exercise and control groups, but was preserved in the aerobic-exercise group post acute leg press at week 8 (P < 0.05). Post acute leg press microvessel FMD was preserved in the aerobic exercise group but impaired in the control group at week 8 (P < 0.05). Preserved dilation in the aerobic exercise group was more sensitive to H2O2 scavenging than inhibition of nitric oxide, and post acute leg press microvessel H2O2 production was increased compared with at rest (P < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。