Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching

Notch 信号调节 UNC5B 抑制内皮细胞增殖、迁移、连接活动和视网膜丛分支

阅读:5
作者:Qanber Raza, Taliha Nadeem, Seock-Won Youn, Bhairavi Swaminathan, Ahana Gupta, Timothy Sargis, Jing Du, Henar Cuervo, Anne Eichmann, Susan L Ackerman, L A Naiche, Jan Kitajewski

Abstract

Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。