Role of BMI1 in epithelial ovarian cancer: investigated via the CRISPR/Cas9 system and RNA sequencing

BMI1 在上皮性卵巢癌中的作用:通过 CRISPR/Cas9 系统和 RNA 测序进行研究

阅读:6
作者:Qianying Zhao, Qiuhong Qian, Dongyan Cao, Jiaxin Yang, Ting Gui, Keng Shen

Background

B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) might be an appropriate biomarker in the management of epithelial ovarian cancer (EOC). However, the biological role of BMI1 and its relevant molecular mechanism needs further elaboration. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is an excellent genome-editing tool and is scarcely used in EOC studies.

Conclusion

BMI1 is a potential biomarker in EOC management, especially for tumor progression and chemo-resistance. Molecular traits, including BMI1 and core genes in Focal adhesion and PI3K/AKT pathways, might be alternatives as therapeutic targets for EOC.

Methods

We first applied CRISPR/Cas9 technique to silence BMI1 in EOC cells; thereafter we accomplished various in vivo and in vitro experiments to detect biological behaviors of ovarian cancer cells, including MTT, flow cytometry, Transwell, real-time polymerase chain reaction and western blotting assays, etc.; eventually, we used RNA sequencing to reveal the underlying molecular traits driven by BMI1 in EOC.

Results

We successfully shut off the expression of BMI1 in EOC cells using CRISPR/Cas9 system, providing an ideal cellular model for investigations of target gene. Silencing BMI1 could reduce cell growth and metastasis, promote cell apoptosis, and enhance the platinum sensitivity of EOC cells. BMI1 might alter extracellular matrix structure and angiogenesis of tumor cells through regulating Focal adhesion and PI3K/AKT pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。