Efficacy of treating segmental bone defects through endochondral ossification: 3D printed designs and bone metabolic activities

通过软骨内骨化治疗节段性骨缺损的疗效:3D打印设计和骨代谢活动

阅读:5
作者:Kenji Hara, Endre Hellem, Shuntaro Yamada, Kemal Sariibrahimoglu, Anders Mølster, Nils R Gjerdet, Sølve Hellem, Kamal Mustafa, Mohammed A Yassin

Abstract

Three-dimensional printing (3D printing) is a promising technique for producing scaffolds for bone tissue engineering applications. Porous scaffolds can be printed directly, and the design, shape and porosity can be controlled. 3D synthetic biodegradable polymeric scaffolds intended for in situ bone regeneration must meet stringent criteria, primarily appropriate mechanical properties, good 3D design, adequate biocompatibility and the ability to enhance bone formation. In this study, healing of critical-sized (5 ​mm) femur defects of rats was enhanced by implanting two different designs of 3D printed poly(l-lactide-co-ε-caprolactone) (poly(LA-co-CL)) scaffolds seeded with rat bone marrow mesenchymal stem cells (rBMSC), which had been pre-differentiated in vitro into cartilage-forming chondrocytes. Depending on the design, the scaffolds had an interconnected porous structure of 300-500 ​μm and porosity of 50-65%. According to a computational simulation, the internal force distribution was consistent with scaffold designs and comparable between the two designs. Moreover, the defects treated with 3D-printed scaffolds seeded with chondrocyte-like cells exhibited significantly increased bone formation up to 15 weeks compared with empty defects. In all experimental animals, bone metabolic activity was monitored by positron emission tomography 1, 3, 5, 7, 11 and 14 weeks after surgery. This demonstrated a time-dependent relationship between scaffold design and metabolic activity. This confirmed that successful regeneration was highly reproducible. The in vitro and in vivo data indicated that the experimental setups had promising outcomes and could facilitate new bone formation through endochondral ossification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。