Arginine pretreatment enhances circulating endothelial progenitor cell population and attenuates inflammatory response in high-fat diet-induced obese mice with limb ischemia

精氨酸预处理可增强循环内皮祖细胞群并减弱高脂饮食引起的肢体缺血肥胖小鼠的炎症反应

阅读:13
作者:Yu-Fan Kuo, Chiu-Li Yeh, Juey-Ming Shih, Yao-Ming Shih, Sung-Ling Yeh

Abstract

Obesity is a global health problem with an up-regulated inflammatory reaction. Obesity-induced endothelial progenitor cells (EPCs) dysfunction is associated with vascular complications that may contribute to critical limb ischemia. Arginine (Arg) is an amino acid with immune-modulatory property and has been found to promote EPCs mobilization in disease conditions. Thus in the present investigation, we hypothesized that arginine given to a murine model of diet-induced obesity would increase circulating EPCs and mitigate the inflammatory reactions in response to limb ischemia. Mice were divided into normal group (NC), high-fat group (HC), and high-fat Arg group (HA). Mice in the HC group were fed with a diet containing 60% energy as fat for 8 weeks, while HA group were initially fed with the same high-fat diet for 4 weeks and later shifted to a high-fat diet enriched with 2% Arg for the remaining 4 weeks. Then mice in the HC and HA groups underwent ischemic operations and were euthanized at either day 1 or day 7 after limb ischemia. The results showed that, compared to the ischemic HC group, the ischemic HA group had higher circulating EPCs at day 1 post-ischemia and higher muscle stromal cell-derived factor-1 and interleukin (IL)-10 mRNA expressions at day 7 after ischemia. In contrast, plasma leptin concentration and expressions of IL-1β and tumor necrosis factor-α mRNAs by adipocytes were down-regulated. These findings suggest that obese mice treated with Arg-containing high-fat diet enhanced circulating EPCs percentage and attenuated inflammatory reaction in response to limb ischemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。