4-Methoxybenzylalcohol protects brain microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced injury via activation of the PI3K/AKT signaling pathway

4-甲氧基苄醇通过激活 PI3K/AKT 信号通路保护脑微血管内皮细胞免受氧-糖剥夺/再灌注引起的损伤

阅读:4
作者:Qing Lin, Weili Wang, Liping Yang, Xiaohua Duan

Abstract

Damage to the blood-brain barrier (BBB) during the process of cerebral ischemic injury is a key factor that affects the treatment of this condition. The present study aimed to assess the potential effects of 4-methoxybenzyl alcohol (4-MA) on brain microvascular endothelial cells (bEnd.3) against oxygen-glucose deprivation/reperfusion (OGD/Rep) using an in vitro model that mimics in vivo ischemia/reperfusion injury. In addition, the present study aimed to explore whether this underlying mechanism was associated with the inhibition of pro-inflammatory factors and the activation status of the PI3K/Akt signaling pathway. bEnd.3 cells were subjected to OGD/Rep-induced injury before being treated with 4-MA, following which cell viability, lactate dehydrogenase (LDH) release and levels of nitric oxidase (NO) were detected by colorimetry, pro-inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were detected by ELISA. The expression levels of occluding and claudin-5were evaluated by immunofluorescence staining. The expression levels of AKT, phosphorylated (p)-Akt, endothelial nitric oxide synthase (eNOS) and p-eNOS were also measured by western blot analysis. After bEnd.3 cells were subjected to OGD/Rep-induced injury, cell viability and NO levels were significantly decreased, whilst LDH leakage and inflammatory factor (TNF-α, IL-1β and IL-6) levels were significantly increased. Treatment with 4-MA significantly ameliorated cell viability, LDH release and the levels of NO and pro-inflammatory factors TNF-α, IL-1β and IL-6 as a result of OGD/Rep. Furthermore, treatment with 4-MA upregulated the expression of occludin, claudin-5, Akt and eNOS, in addition to increasing eNOS and AKT phosphorylation in bEnd.3 cells. These results suggest that 4-MA can alleviate OGD/Rep-induced injury in bEnd.3 cells by inhibiting inflammation and by activating the PI3K/AKT signaling pathway as a possible mechanism. Therefore, 4-MA can serve as a potential candidate for treating OGD/Rep-induced injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。