Proteomic profiling of the neurons in mice with depressive-like behavior induced by corticosterone and the regulation of berberine: pivotal sites of oxidative phosphorylation

皮质酮诱发抑郁样行为小鼠神经元的蛋白质组学分析及小檗碱的调控:氧化磷酸化的关键位点

阅读:6
作者:Qin Gong, Xiao-Jin Yan, Fan Lei, Mu-Lan Wang, Lu-Ling He, Ying-Ying Luo, Hong-Wei Gao, Yu-Lin Feng, Shi-Lin Yang, Jun Li, Li-Jun Du

Abstract

Chronic corticosterone (CORT) stress is an anxiety and depression inducing factor that involves the dysfunction of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF), and neuronal plasticity. However, the regulation of proteomic profiles in neurons suffering CORT stress is remaining elusive. Thus, the proteomic profiles of mouse neuronal C17.2 stem cells were comprehensively investigated by TMT (tandem mass tag)-labeling quantitative proteomics. The quantitative proteomics conjugated gene ontology analysis revealed the inhibitory effect of CORT on the expression of mitochondrial oxidative phosphorylation-related proteins, which can be antagonized by berberine (BBR) treatment. In addition, animal studies showed that changes in mitochondria by CORT can affect neuropsychiatric activities and disturb the physiological functions of neurons via disordering mitochondrial oxidative phosphorylation. Thus, the mitochondrial energy metabolism can be considered as one of the major mechanism underlying CORT-mediated depression. Since CORT is important for depression after traumatic stress disorder, our study will shed light on the prevention and treatment of depression as well as posttraumatic stress disorder (PTSD).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。