Bradykinin induces acute kidney injury after hypothermic circulatory arrest through the repression of the Nrf2-xCT pathway

缓激肽通过抑制 Nrf2-xCT 通路诱发低温停循环后急性肾损伤

阅读:3
作者:Jinzhang Li, Meili Wang, Maozhou Wang, He Sang, Wei Wang, Ming Gong, Hongjia Zhang

Abstract

Postoperative acute kidney injury (AKI) is a common complication in patients undergoing deep hypothermic circulatory arrest (HCA); however, its underlying pathogenesis is unclear. In this study, we established a rat cardiopulmonary bypass model and demonstrated that hypothermia during HCA, rather than circulatory arrest, was responsible for the occurrence of AKI. By recruiting 56 patients who underwent surgery with HCA and analyzing the blood samples, we found that post-HCA AKI was associated with an increase in bradykinin. Animal experiments confirmed this and showed that hypothermia during HCA increased bradykinin levels by increasing kallikrein expression. Mechanistically, bradykinin inhibited the Nrf2-xCT pathway through B2R and caused renal oxidative stress damage. Application of Icatibant, a B2R inhibitor, reversed changes in the Nrf2-xCT pathway and oxidative stress damage. Finally, Icatibant reversed hypothermia-induced AKI in vivo. This finding reveals the pathogenesis of AKI after HCA and helps to provide therapeutic strategy for patients with post-HCA AKI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。