Mitochondrial DNA induces Foley catheter related bladder inflammation via Toll-like receptor 9 activation

线粒体 DNA 通过激活 Toll 样受体 9 诱发 Foley 导管相关的膀胱炎症

阅读:6
作者:Carlos A Puyo, Alexander Earhart, Nicholas Staten, Yuan Huang, Alana Desai, Henry Lai, Ramakrishna Venkatesh

Abstract

Bladder instrumentation engages the innate immune system via neutrophil activation, promoting inflammation and pain. Elevated levels of mitochondrial DNA (mtDNA) have been associated with tissue damage and organ dysfunction. We hypothesized that local bladder trauma induced by a Foley catheter (FC) will result in mtDNA release, migration of neutrophils into the bladder lumen, and activation of the Toll-like receptor 9 (TLR9) and nuclear factor kappa B (NF-κB) pathway leading to bladder tissue damage. We randomized 10 swine into two groups receiving uncoated, or chloroquine/N-Acetylcysteine (CQ/NAC)-coated FCs. Urine samples were analyzed for mtDNA activation of TLR9/NF-κB as demonstrated by indicators of neutrophil adhesion, migration, and activation. We found that uncoated FCs resulted in a unique active neutrophil phenotype that correlated with bladder epithelial injury, neutrophilia, necrosis, mtDNA release, TLR9/NF-κB activation, transcription and secretion of pro-inflammatory cytokines, and enhanced respiratory burst. In our study we observed that the high levels of mtDNA and elevated TLR9/NF-κB activity were ameliorated in the CQ/NAC-coated FC group. These findings suggest that post-migrated bladder luminal neutrophils are involved in local tissue damage and amelioration of the mtDNA/TLR9/NF-κB inflammatory axis may represent a therapeutic target to prevent inflammation, and bladder tissue injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。